English

If \[\Tan \Theta = \Frac{3}{4}\], Find the Values of Sec​θ and Cos​θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

If \[\tan \theta = \frac{3}{4}\], find the values of sec​θ and cos​θ

Solution

We have,
\[\sec^2 \theta = 1 + \tan^2 \theta\]
\[ \Rightarrow \sec^2 \theta = 1 + \left( \frac{3}{4} \right)^2 \]
\[ \Rightarrow \sec^2 \theta = 1 + \frac{9}{16} = \frac{16 + 9}{16} = \frac{25}{16}\]
\[ \Rightarrow \sec\theta = \sqrt{\frac{25}{16}} = \frac{5}{4}\]
Now,

\[\cos\theta = \frac{1}{\sec\theta}\]

\[ \Rightarrow \cos\theta = \frac{1}{\left( \frac{5}{4} \right)}\]

\[ \Rightarrow \cos\theta = \frac{4}{5}\]
Thus, the values of sec​θ and cos​θ are \[\frac{5}{4}\] and \[\frac{4}{5}\], respectively.

shaalaa.com
Application of Trigonometry
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Practice Set 6.1 [Page 131]

APPEARS IN

RELATED QUESTIONS

If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tan​θ.


If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.


If tanθ = 1 then, find the value of

`(sinθ + cosθ)/(secθ + cosecθ)`


Prove that:

\[\cot\theta + \tan\theta = cosec\theta \sec\theta\]

Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`


Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]


Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?


Choose the correct alternative answer for the following question.
cosec 45° =?


Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ 


Choose the correct alternative: 
sinθ × cosecθ =?


If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×