Advertisements
Advertisements
Question
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
Solution
We have,
\[\sec^2 \theta = 1 + \tan^2 \theta\]
\[ \Rightarrow \sec^2 \theta = 1 + \left( \frac{3}{4} \right)^2 \]
\[ \Rightarrow \sec^2 \theta = 1 + \frac{9}{16} = \frac{16 + 9}{16} = \frac{25}{16}\]
\[ \Rightarrow \sec\theta = \sqrt{\frac{25}{16}} = \frac{5}{4}\]
Now,
\[\cos\theta = \frac{1}{\sec\theta}\]
\[ \Rightarrow \cos\theta = \frac{1}{\left( \frac{5}{4} \right)}\]
\[ \Rightarrow \cos\theta = \frac{4}{5}\]
Thus, the values of secθ and cosθ are \[\frac{5}{4}\] and \[\frac{4}{5}\], respectively.
APPEARS IN
RELATED QUESTIONS
If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tanθ.
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
Prove that:
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
cosec 45° =?
Choose the correct alternative answer for the following question.
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Choose the correct alternative:
sinθ × cosecθ =?
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ