Advertisements
Advertisements
Question
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
Solution
\[\cot\theta = \frac{40}{9}\] ...[Given]
We have,
\[{cosec}^2 \theta = 1 + \cot^2 \theta\]
\[ \Rightarrow {cosec}^2 \theta = 1 + \left( \frac{40}{9} \right)^2 \]
\[ \Rightarrow {cosec}^2 \theta = 1 + \frac{1600}{81} = \frac{1681}{81}\]
\[ \Rightarrow cosec \theta = \sqrt{\frac{1681}{81}} = \frac{41}{9}\] ...[Taking square root of both sides]
Now,
\[\sin\theta = \frac{1}{cosec\theta}\]\[ \Rightarrow \sin\theta = \frac{1}{\frac{41}{9}}\]
\[ \Rightarrow \sin\theta = \frac{9}{41}\]
Thus, the values of cosecθ and sinθ are \[\frac{41}{9}\] and \[\frac{9}{41}\], respectively.
APPEARS IN
RELATED QUESTIONS
Prove that:
cos2θ (1 + tan2θ)
Prove that:
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
cosec 45° =?
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following.
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Prove the following.
Choose the correct alternative:
sinθ × cosecθ =?
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ