English

If Cot θ = 40 9 , Find the Values of Cosecθ and Sinθ. - Geometry Mathematics 2

Advertisements
Advertisements

Question

If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.

Sum

Solution

\[\cot\theta = \frac{40}{9}\]           ...[Given]

We have,

\[{cosec}^2 \theta = 1 + \cot^2 \theta\]

\[ \Rightarrow {cosec}^2 \theta = 1 + \left( \frac{40}{9} \right)^2 \]

\[ \Rightarrow {cosec}^2 \theta = 1 + \frac{1600}{81} = \frac{1681}{81}\]

\[ \Rightarrow cosec \theta = \sqrt{\frac{1681}{81}} = \frac{41}{9}\]           ...[Taking square root of both sides]

Now,

\[\sin\theta = \frac{1}{cosec\theta}\]\[ \Rightarrow \sin\theta = \frac{1}{\frac{41}{9}}\]

\[ \Rightarrow \sin\theta = \frac{9}{41}\]

Thus, the values of cosecθ and sinθ are \[\frac{41}{9}\] and \[\frac{9}{41}\], respectively.

shaalaa.com
Application of Trigonometry
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Practice Set 6.1 [Page 131]

APPEARS IN

RELATED QUESTIONS

Prove that:

cos2θ (1 + tan2θ)


Prove that:

\[\cot\theta + \tan\theta = cosec\theta \sec\theta\]

Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`


Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]


Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?


Choose the correct alternative answer for the following question.
cosec 45° =?


Prove the following.

secθ (1 – sinθ) (secθ + tanθ) = 1


Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ


Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

Prove the following:

sec6x – tan6x = 1 + 3sec2x × tan2x


Prove the following.

\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]


Prove the following.

\[\frac{\tan^3 \theta - 1}{\tan\theta - 1} = \sec^2 \theta + \tan\theta\]

Choose the correct alternative: 
sinθ × cosecθ =?


Show that: 

`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`


In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.


ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×