Advertisements
Advertisements
प्रश्न
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
उत्तर
\[\cot\theta = \frac{40}{9}\] ...[Given]
We have,
\[{cosec}^2 \theta = 1 + \cot^2 \theta\]
\[ \Rightarrow {cosec}^2 \theta = 1 + \left( \frac{40}{9} \right)^2 \]
\[ \Rightarrow {cosec}^2 \theta = 1 + \frac{1600}{81} = \frac{1681}{81}\]
\[ \Rightarrow cosec \theta = \sqrt{\frac{1681}{81}} = \frac{41}{9}\] ...[Taking square root of both sides]
Now,
\[\sin\theta = \frac{1}{cosec\theta}\]\[ \Rightarrow \sin\theta = \frac{1}{\frac{41}{9}}\]
\[ \Rightarrow \sin\theta = \frac{9}{41}\]
Thus, the values of cosecθ and sinθ are \[\frac{41}{9}\] and \[\frac{9}{41}\], respectively.
APPEARS IN
संबंधित प्रश्न
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Prove that:
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
cosec 45° =?
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following.
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Choose the correct alternative:
sinθ × cosecθ =?
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.