Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
\[\cot\theta + \tan\theta\]
\[ = \frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}\]
\[ = \frac{\sin^2 \theta + \cos^2 \theta}{\sin\theta\cos\theta}\]
\[ = \frac{1}{\sin\theta\cos\theta} \left( \sin^2 \theta + \cos^2 \theta = 1 \right)\]
\[ = \frac{1}{\sin\theta} \times \frac{1}{\cos\theta}\]
\[ = \text{ cosec } \theta\sec\theta\]
APPEARS IN
संबंधित प्रश्न
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
Prove that:
cos2θ (1 + tan2θ)
Prove that:
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Choose the correct alternative answer for the following question.
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Prove the following.
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.