Advertisements
Advertisements
प्रश्न
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
उत्तर
L.H.S = \[\cot^2 \theta - \tan^2 \theta\]
[1 + tan2θ = sec2θ, 1 + cot2θ = coses2θ]
\[ = \left( {cosec}^2 \theta - 1 \right) - \left( \sec^2 \theta - 1 \right)\]
\[ = {cosec}^2 \theta - 1 - \sec^2 \theta + 1\]
\[ = {cosec}^2 \theta - \sec^2 \theta\]
= R.H.S
APPEARS IN
संबंधित प्रश्न
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
Prove that:
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Prove that:
Choose the correct alternative answer for the following question.
cosec 45° =?
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Choose the correct alternative answer for the following question.
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
Choose the correct alternative:
sinθ × cosecθ =?
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.