Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}}\]
\[ = \sqrt{\frac{1 - \sin\theta}{1 + \sin\theta} \times \frac{1 - \sin\theta}{1 - \sin\theta}}\]
\[ = \sqrt{\frac{\left( 1 - \sin\theta \right)^2}{1 - \sin^2 \theta}}\]
\[ = \sqrt{\frac{\left( 1 - \sin\theta \right)^2}{\cos^2 \theta}} \left( \cos^2 \theta + \sin^2 \theta = 1 \right)\]
\[= \frac{1 - \sin\theta}{\cos\theta}\]
\[ = \frac{1}{\cos\theta} - \frac{\sin\theta}{\cos\theta}\]
\[ = \sec\theta - \tan\theta\]
APPEARS IN
संबंधित प्रश्न
If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tanθ.
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
cosec 45° =?
Choose the correct alternative answer for the following question.
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Choose the correct alternative:
sinθ × cosecθ =?
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ