Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
L.H.S. = \[\sec\theta + \tan\theta\]
\[ = \frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta}\]
\[ = \frac{1 + \sin\theta}{\cos\theta}\]
= \[\frac{1+\sin\theta}{\cos\theta}\times\frac{1-\sin\theta}{1-\sin\theta}\]
= \[\frac{1^{2}-\sin^{2}\theta}{\cos\theta\bigl(1-\sin\theta\bigr)}\]
= \[\frac{1-\sin^{2}\theta}{\cos\theta\left(1-\sin\theta\right)}\]
= \[\frac{\cos^{2}\theta}{\cos\theta(1-\sin\theta)}\] ...\[\begin{bmatrix}\because\sin^{2}\theta+\cos^{2}\theta=1\\\therefore1-\sin^{2}\theta=\cos^{2}\theta\end{bmatrix}\]
= \[\frac{\cos\theta}{1 - \sin\theta}\]
= R.H.S.
∴ \[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]
APPEARS IN
संबंधित प्रश्न
If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tanθ.
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
Prove that:
cos2θ (1 + tan2θ)
Prove that:
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Choose the correct alternative answer for the following question.
cosec 45° =?
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following.
Choose the correct alternative:
sinθ × cosecθ =?
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ