मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Prave That: Sec θ + Tan θ = Cos θ 1 − Sin θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]
बेरीज

उत्तर

L.H.S. = \[\sec\theta + \tan\theta\]

\[ = \frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta}\]

\[ = \frac{1 + \sin\theta}{\cos\theta}\]

= \[\frac{1+\sin\theta}{\cos\theta}\times\frac{1-\sin\theta}{1-\sin\theta}\]

= \[\frac{1^{2}-\sin^{2}\theta}{\cos\theta\bigl(1-\sin\theta\bigr)}\]

= \[\frac{1-\sin^{2}\theta}{\cos\theta\left(1-\sin\theta\right)}\]

= \[\frac{\cos^{2}\theta}{\cos\theta(1-\sin\theta)}\]           ...\[\begin{bmatrix}\because\sin^{2}\theta+\cos^{2}\theta=1\\\therefore1-\sin^{2}\theta=\cos^{2}\theta\end{bmatrix}\]

= \[\frac{\cos\theta}{1 - \sin\theta}\]

= R.H.S.

∴ \[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

shaalaa.com
Application of Trigonometry
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Practice Set 6.1 [पृष्ठ १३१]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
पाठ 6 Trigonometry
Practice Set 6.1 | Q 6.08 | पृष्ठ १३१

संबंधित प्रश्‍न

If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tan​θ.


If \[\tan \theta = \frac{3}{4}\], find the values of sec​θ and cos​θ


If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.


If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.


If tanθ = 1 then, find the value of

`(sinθ + cosθ)/(secθ + cosecθ)`


Prove that:

cos2θ (1 + tan2θ)


Prove that:

\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta\]

Prove that:

(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.


Choose the correct alternative answer for the following question.
cosec 45° =?


Choose the correct alternative answer for the following question.

1 + tan2 \[\theta\]  = ?


Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ


Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ 


Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

Choose the correct alternative: 
sinθ × cosecθ =?


In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.


ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×