Advertisements
Advertisements
प्रश्न
Prove the following.
उत्तर
\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta}\]
\[ = \frac{1 + \sin\theta + 1 - \sin\theta}{\left( 1 - \sin\theta \right)\left( 1 + \sin\theta \right)}\]
\[ = \frac{2}{1 - \sin^2 \theta} \left[ \left( a - b \right)\left( a + b \right) = a^2 - b^2 \right]\]
\[ = \frac{2}{\cos^2 \theta} \left( \sin^2 \theta + \cos^2 \theta = 1 \right)\]
\[ = 2 \sec^2 \theta\]
APPEARS IN
संबंधित प्रश्न
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
Prove that:
cos2θ (1 + tan2θ)
Prove that:
Prove that:
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
Prove that:
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Choose the correct alternative answer for the following question.
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.