Advertisements
Advertisements
प्रश्न
Choose the correct alternative answer for the following question.
पर्याय
angle of elevation.
angle of depression.
0
straight angle.
उत्तर
When we see at a higher level, from the horizontal line, angle formed is angle of elevation.
Hence, the correct answer is angle of elevation.
संबंधित प्रश्न
If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tanθ.
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
Prove that:
cos2θ (1 + tan2θ)
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that:
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Prove the following.
Choose the correct alternative:
sinθ × cosecθ =?
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ