मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

If sinθ = 1161, find the values of cosθ using trigonometric identity. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If sinθ = `11/61`, find the values of cosθ using trigonometric identity.

बेरीज

उत्तर

sinθ = `11/61`  ...[Given]

We have,

sin2θ + cos2θ = 1

⇒ cos2θ = 1 − sin2θ

⇒ `cos^2θ = 1 - (11/61)^2`

⇒ `cos^2θ = 1 - 121/3721`

⇒ `cos^2θ = (3721 - 121)/3721`

⇒ `cos^2θ = 3600/3721`

⇒ `cosθ = sqrt((60/61)^2)` ...[Taking square root of both sides]

⇒ cosθ = `60/61`

Thus, the value of cosθ is `60/61`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
पाठ 6 Trigonometry
Problem Set 6 | Q 2 | पृष्ठ १३८

संबंधित प्रश्‍न

Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Prove the following identities:

cosec4 A (1 – cos4 A) – 2 cot2 A = 1


If sec A + tan A = p, show that:

`sin A = (p^2 - 1)/(p^2 + 1)`


`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


Choose the correct alternative:

Which is not correct formula?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×