Advertisements
Advertisements
प्रश्न
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
उत्तर
sinθ = `11/61` ...[Given]
We have,
sin2θ + cos2θ = 1
⇒ cos2θ = 1 − sin2θ
⇒ `cos^2θ = 1 - (11/61)^2`
⇒ `cos^2θ = 1 - 121/3721`
⇒ `cos^2θ = (3721 - 121)/3721`
⇒ `cos^2θ = 3600/3721`
⇒ `cosθ = sqrt((60/61)^2)` ...[Taking square root of both sides]
⇒ cosθ = `60/61`
Thus, the value of cosθ is `60/61`.
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
Choose the correct alternative:
Which is not correct formula?