Advertisements
Advertisements
प्रश्न
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
उत्तर
`(cosecA)/(cotA+tanA)=cosA`
= LHS
= `(cosecA)/(cotA+tanA)`
= `(cosecA)/(cosA/sinA+sinA/cosA)`
=`((cosecA)/(cos^2A+sin^2A))/(sinA.cosA)`
= `(1/sinA)/(1/(sinA.cosA))`
= `(sinA.cosA)/sinA`
= cosA
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
If 1 – cos2θ = `1/4`, then θ = ?