Advertisements
Advertisements
प्रश्न
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
उत्तर
`= (a cos^3 theta + 3a cos theta sin^2 theta + a sin^3 theta + 3a cos^2 theta sin theta)^(3/2) + (a cos^3 theta + 3a cos theta sin^2 theta - a sin^3 theta - 3a cos^2 theta sin theta)^(2/3)`
`= a^(1/3) (cos^3 theta + 3 cos theta sin^2 theta + sin^3 theta + 3 cos^2 theta sin theta)^(2/3) + a^(2/3) (cos^3 theta + 3 cos theta sin^2 theta + sin^3 theta - 3 cos^2 theta sin theta)^(2/3)`
`= a^(1/3) [(cos theta + sin theta)^3]^(2/3) + a^(2/3) (cos theta - sin theta)^3]^(2/3)`
`= a^(2/3) [(cos theta + sin theta)^2] + a^(2/3) (cos theta - sin theta)^2`
`= a^(2/3) [cos^2 theta + sin^2 theta - 2sin theta cos theta]`
`= a^(2/3) [cos^2 theta + sin^2 theta + 2 sin theta cos theta] +_ a^(2/3) [cos^2 theta + sin^2 theta - 2 sin theta cos theta]`
`= a^(2/3) [1 + 2 sin theta cos theta] + a^(2/3)[1 - 2 sin theta cos theta]`
`= a^(2/3) [1 + 2 sin theta cos theta + 1 - 2 sin theta cos theta]`
`= a^(1/3) (1 + 1) = 2a^(2/3)`
R.H.S
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
If sec θ = `25/7`, then find the value of tan θ.
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
Eliminate θ if x = r cosθ and y = r sinθ.