Advertisements
Advertisements
प्रश्न
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
उत्तर
Given that,
`cosec theta - sin theta = a^3` .....(1)
`sec theta - cos theta = b^3` ......(2)
We have to prove `a^2b^2(a^2 + b^2) = 1`
We know that `sin^2 theta + cos^2 theta = 1`
Now from the first equation, we have
`cosec theta - sin theta = a^3`
`=> 1/sin theta - sin theta = a^3`
`=> (1 - sin^2 theta)/sin theta = a^3`
`=> cos^2 theta/sin theta = a^3`
`=> a = (cos^(2/3) theta)/(sin^(1/3) theta)`
Again from the second equation, we have
`sec theta - cos theta =- b^3`
`=> 1/cos theta - cos theta = b^3`
`=> (1 - cos^2 theta)/cos theta = b^3`
`=> sin^2 theta/cos theta = b^3`
`=> b = (sin^(2/3) theta)/(cos^(1/3) theta)`
Therefore, we have
`a^2b^2 (a^2 + b^2) = (cos^(4/3) theta)/(sin^(2/3) theta cos^(2/3) theta) ((cos^(4/3) theta)/(sin^(2/3) theta) + (sin^(4/3) theta)/(cos^(2/3) theta))`
`= sin^(2/3) theta cos^(2/3) ((cos^(4/3) theta)/(sin^(2/3) theta) + (sin^(4/3) theta)/(cos^(2/3) theta))`
`= cos^(2/3) theta cos^(4/3) theta + sin^(2/3) theta sin^(4/3) theta`
`= cos^2 theta + sin^2 theta`
= 1
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.