मराठी

If `Cosec Theta - Sin Theta = A^3`, `Sec Theta - Cos Theta = B^3` Prove that `A^2 B^2 (A^2 + B^2) = 1` - Mathematics

Advertisements
Advertisements

प्रश्न

if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`

उत्तर

Given that,

`cosec theta - sin theta = a^3` .....(1)

`sec theta - cos theta = b^3`    ......(2)

We have to prove `a^2b^2(a^2 + b^2) = 1`

We know that `sin^2 theta + cos^2 theta = 1`

Now from the first equation, we have

`cosec theta - sin theta = a^3`

`=> 1/sin theta - sin theta = a^3`

`=> (1 - sin^2 theta)/sin theta = a^3`

`=> cos^2 theta/sin theta = a^3`

`=> a = (cos^(2/3) theta)/(sin^(1/3) theta)`

Again from the second equation, we have

`sec theta - cos theta =- b^3`

`=> 1/cos theta - cos theta = b^3`

`=> (1 - cos^2 theta)/cos theta = b^3`

`=> sin^2 theta/cos theta = b^3`

`=> b = (sin^(2/3) theta)/(cos^(1/3) theta)`

Therefore, we have

`a^2b^2 (a^2 + b^2) = (cos^(4/3) theta)/(sin^(2/3) theta cos^(2/3) theta) ((cos^(4/3) theta)/(sin^(2/3) theta) + (sin^(4/3) theta)/(cos^(2/3) theta))`

`= sin^(2/3) theta cos^(2/3) ((cos^(4/3) theta)/(sin^(2/3) theta) + (sin^(4/3) theta)/(cos^(2/3) theta))`

`= cos^(2/3) theta cos^(4/3) theta + sin^(2/3) theta sin^(4/3) theta`

`= cos^2 theta + sin^2 theta`

= 1

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 76 | पृष्ठ ४६

संबंधित प्रश्‍न

Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


If cos A + cos2 A = 1, then sin2 A + sin4 A =


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×