Advertisements
Advertisements
प्रश्न
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
उत्तर
L.H.S. = (sec A – cos A) (sec A + cos A)
= sec2 A – cos2 A
= (1 + tan2 A) – (1 – sin2 A)
= sin2 A + tan2 A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.