Advertisements
Advertisements
प्रश्न
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
उत्तर
L.H.S. = (cos A + sin A)2 + (cos A – sin A)2
= cos2 A + sin2 A + 2 cos A . sin A + cos2 A + sin2 A – 2 cos A . sin A
= 2 sin2 A + 2 cos2 A
= 2(sin2 A + cos2 A) ...(∵ sin2 A + cos2 A = 1)
= 2 × 1
= 2
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`sec theta (1- sin theta )( sec theta + tan theta )=1`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
(sec θ + tan θ) . (sec θ – tan θ) = ?
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B