Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
उत्तर
LHS = `(1 + tan^2θ)sinθcosθ`
= `(1 + sin^2θ/cos^2θ)sinθcosθ`
= `((cos^2θ + sin^2θ)/cos^2θ)sinθcosθ`
= `1/cos^2θ xx sinθcosθ` (∵ `cos^2θ + sin2θ = 1`)
= `sinθ/cosθ = tanθ`
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
Eliminate θ if x = r cosθ and y = r sinθ.