Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
उत्तर
LHS = `(1 + tan^2θ)sinθcosθ`
= `(1 + sin^2θ/cos^2θ)sinθcosθ`
= `((cos^2θ + sin^2θ)/cos^2θ)sinθcosθ`
= `1/cos^2θ xx sinθcosθ` (∵ `cos^2θ + sin2θ = 1`)
= `sinθ/cosθ = tanθ`
APPEARS IN
संबंधित प्रश्न
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
Prove that cot2θ × sec2θ = cot2θ + 1
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.