Advertisements
Advertisements
प्रश्न
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
विकल्प
`1/3`
`2/5`
`3/5`
6
उत्तर
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = `underline(bb(1/3)`.
Explanation:
Given, 5 tan β = 4
tan β = `4/5`
Now, `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)`
Dividing numerator and denominator by cos β
= `(5 sin β/cos β - 2 cos β/cos β)/(5 sin β/cos β + 2 cos β/cos β)`
= `(5 tan β - 2)/(5 tan β + 2)`
Putting tan θ = `4/5`
= `(5 xx 4/5 - 2)/(5 xx 4/5 + 2)`
= `(4 - 2)/(4 + 2)`
= `2/6`
= `1/3`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
What is the value of (1 + cot2 θ) sin2 θ?
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
Eliminate θ if x = r cosθ and y = r sinθ.