हिंदी

If 5 tan β = 4, then ββββ5 sinβ-2cosβ5sinβ+2cosβ = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.

विकल्प

  • `1/3`

  • `2/5`

  • `3/5`

  • 6

MCQ
रिक्त स्थान भरें

उत्तर

If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = `underline(bb(1/3)`.

Explanation:

Given, 5 tan β = 4

tan β = `4/5`

Now, `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)`

Dividing numerator and denominator by cos β

= `(5  sin β/cos β - 2  cos β/cos β)/(5  sin β/cos β + 2  cos β/cos β)`

= `(5 tan β - 2)/(5 tan β + 2)`

Putting tan θ = `4/5`

= `(5 xx 4/5 - 2)/(5 xx 4/5 + 2)`

= `(4 - 2)/(4 + 2)`

= `2/6`

= `1/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Standard Sample

संबंधित प्रश्न

Prove the following trigonometric identities:

`(1 - cos^2 A) cosec^2 A = 1`


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove the following trigonometric identities.

`1/(1 + sin A) + 1/(1 - sin A) =  2sec^2 A`


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`


`(cos theta  cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


What is the value of (1 + cot2 θ) sin2 θ?


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`


Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Eliminate θ if x = r cosθ and y = r sinθ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×