Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
उत्तर
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) ` [`∵ sec^2 theta - tan^2 theta = 1 - cosec^2 theta - cot^2 theta = 1`]
`= tan theta + cos^2 theta = cot^3 theta xx sin^3 theta`
`[∵ 1/sec^2 theta = cos^2 theta, 1/cosec^2 theta = 1 + cot^2 theta]`
`sin^3 theta/cos^3 theta xx cos^2 theta + cos^3 theta/sin^3 theta xx sin^2 theta`
`sin^3 theta/cos theta + cos^3 theta/sin theta`
`= (sin^4 theta + cos^4 theta)/(sin theta cos theta)`
` (1 - 2sin^2 theta cos^2 theta)/(sin theta cos theta)`
`1/(sin theta cos theta) - (2 sin^2 theta cos^2 theta)/(sin theta cos theta)`
`sec theta cosec theta - 2sin theta cos theta`.
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α