Advertisements
Advertisements
प्रश्न
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
उत्तर
`x^2 - y^2 = (asecθ + bTanθ)^2 - (aTanθ + bSecθ)^2`
⇒ `a^2sec^2θ + b^2Tan^2θ + 2abSecθTanθ - (a^2Tan^2θ + b^2Sec^2θ + 2abSecθTanθ)`
⇒ `sec^2θ(a^2 - b^2) + Tan^2θ(b^2 - a^2) = (a^2 - b^2)[Sec^2θ - Tan^2θ]`
⇒ `(a^2 - b^2)` [Since `sec^2θ - Tan^2θ = 1`]
Hence , `x^2 - y^2 = a^2 - b^2`
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ