Advertisements
Advertisements
प्रश्न
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
उत्तर
`x^2 - y^2 = (asecθ + bTanθ)^2 - (aTanθ + bSecθ)^2`
⇒ `a^2sec^2θ + b^2Tan^2θ + 2abSecθTanθ - (a^2Tan^2θ + b^2Sec^2θ + 2abSecθTanθ)`
⇒ `sec^2θ(a^2 - b^2) + Tan^2θ(b^2 - a^2) = (a^2 - b^2)[Sec^2θ - Tan^2θ]`
⇒ `(a^2 - b^2)` [Since `sec^2θ - Tan^2θ = 1`]
Hence , `x^2 - y^2 = a^2 - b^2`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Show that tan4θ + tan2θ = sec4θ – sec2θ.