Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
उत्तर
We know that `cosec^A - cot^2 A = 1`
So,
`(1 + cot^2 A)sin^2 A = cosec^2 A sin^2A`
`= (cosec A sin A)^2`
`= (1/sin A xx sin A)^2`
`= (1)^2`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
`(1 + cot^2 theta ) sin^2 theta =1`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.