Advertisements
Advertisements
प्रश्न
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
उत्तर
Let `x/(acosθ) = y/(bsinθ)` ..............(1)
and `(ax)/(cosθ) - (by)/(sinθ) = a^2 - b^2` ...........(2)
From (1), `y/sinθ = (xb)/(a cosθ)`
Putting (2) , we get `(ax)/cosθ - b (xb)/(acosθ) = a^2 - b^2`
⇒ `(ax)/cosθ - (xb^2)/(a cosθ) = a^2 - b^2`
⇒ `(x(a^2 - b^2))/(acosθ) = a^2 - b^2`
⇒ x = a cosθ
By(1), `y = (xb sinθ)/(a cosθ) = (a cosθ bsinθ)/(a cosθ) = b sinθ`
Thus , `x^2/a^2 + y^2/b^2 = (a^2 cos^2θ)/a^2 + (b^2 sin^2θ)/b^2 = sin^2θ + cos^2θ = 1`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α