Advertisements
Advertisements
प्रश्न
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
उत्तर
If `sqrt(3)` sin θ – cos θ = θ
To prove tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
`sqrt(3)` sin θ – cos θ = θ
`sqrt(3)` sin θ = cos θ
`sin theta/cos theta = 1/sqrt(3)`
tan θ = tan 30°
θ = 30°
L.H.S = tan 3θ°
= tan3 (30°)
= tan 90°
= undefined (α)
R.H.S = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
= `(3tan30^circ - tan^2 30^circ)/(1 - 3tan^2 30^circ)`
= `3(1/sqrt(3)) - (1/sqrt(3))^3 ÷ 1 - 3 xx (1/sqrt(3))^2`
= `sqrt(3) - 1/(3sqrt(3)) ÷ 1 - 3 xx 1/3`
= `(9 - 1)/(3sqrt(3)) ÷ 1 - 1`
= `8/(3sqrt(3)) ÷ 0`
= undefined (α)
∴ tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.