मराठी

Prove the Following Trigonometric Identities. 1/(Sec a - 1) + 1/(Sec a + 1) = 2 Cosec a Cot a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`

बेरीज

उत्तर १

We need to prove  `1/(secA - 1) + 1/(sec A + 1) = 2 cosec A cot A`

Solving the L.H.S, we get

`1/(sec A  - 1)+ 1/(sec A + 1)  = (sec A + 1 + sec A - 1)/((sec A - 1)(sec A + 1))`

`= (2 sec A)/(sec^2 A - 1)`

Further using the property ` 1 + tan^2 theta = sec^2 theta` we get

So

`(2 sec A)/(sec^2 A - 1) = (2 sec A)/(tan^2 A)`

`= (2(1/cos A))/(sin^2 A/cos^2 A)`

`= 2 1/cos A xx cos^2 A/sin^2 A`

`= 2(cos A/sin A) xx 1/sin A`

= 2cosec A cot A

shaalaa.com

उत्तर २

LHS = `1/(sec A - 1) + 1/(sec A + 1)`

= `(sec A + 1 + sec A - 1)/(sec^2 A - 1 )`

= `(2sec A)/(tan^2 A)`

= `2 . 1/(cos A) xx 1/((sin^2 A)/(cos^2 A))`

= `2. 1/(cos A) xx (cos^2 A)/(sin^2 A)`

= 2 cosec A. cot A
= RHS
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 18 Trigonometry
Exercise 2 | Q 14
आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 41 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


Prove the following identities:

`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`


Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`


Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


Define an identity.


The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to 


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


Prove the following:

`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×