Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
उत्तर १
We need to prove `1/(secA - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Solving the L.H.S, we get
`1/(sec A - 1)+ 1/(sec A + 1) = (sec A + 1 + sec A - 1)/((sec A - 1)(sec A + 1))`
`= (2 sec A)/(sec^2 A - 1)`
Further using the property ` 1 + tan^2 theta = sec^2 theta` we get
So
`(2 sec A)/(sec^2 A - 1) = (2 sec A)/(tan^2 A)`
`= (2(1/cos A))/(sin^2 A/cos^2 A)`
`= 2 1/cos A xx cos^2 A/sin^2 A`
`= 2(cos A/sin A) xx 1/sin A`
= 2cosec A cot A
उत्तर २
LHS = `1/(sec A - 1) + 1/(sec A + 1)`
= `(sec A + 1 + sec A - 1)/(sec^2 A - 1 )`
= `(2sec A)/(tan^2 A)`
= `2 . 1/(cos A) xx 1/((sin^2 A)/(cos^2 A))`
= `2. 1/(cos A) xx (cos^2 A)/(sin^2 A)`
= 2 cosec A. cot A
= RHS
Hence proved.
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Define an identity.
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`