Advertisements
Advertisements
प्रश्न
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
पर्याय
2a
3a
0
2ab
उत्तर
2a
Explanation;
Hint:
b(a2 – 1) = (sec θ + cosec θ) [(sin θ + cos θ)2 – 1]
= `1/ cos theta + 1/sin theta` [sin2 θ + cos2 θ + 2 sin θ cos θ – 1]
= `[(sin theta + cos theta)/(sin theta cos theta)]` [1 + 2 sin θ cos θ – 1]
= `[(sin theta + cos theta)/(sin theta cos theta)] xx 2 sin theta cos theta`
= 2(sin θ + cos θ)
= 2a
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Choose the correct alternative:
sec2θ – tan2θ =?
Given that sin θ = `a/b`, then cos θ is equal to ______.
sin(45° + θ) – cos(45° – θ) is equal to ______.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`