Advertisements
Advertisements
प्रश्न
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
उत्तर
LHS = `cos^2 A + 1/(cosec^2 A)`
= cos2 A + sin2 A
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`