Advertisements
Advertisements
प्रश्न
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
उत्तर
LHS = `(sec A - 1)/(sec A + 1)`
= `(1/cos A - 1)/(1/cos A + 1)`
= `((1 - cos A)/cos A)/((1 + cos A)/cos A)`
= `(1 - cos A)/(1 + cos A)`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`