Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
उत्तर
LHS = `(cosecθ)/(tanθ + cotθ)`
= `(1/sinθ)/(sinθ/cosθ + cosθ/sinθ)`
= `(1/sinθ)/((sin^2θ + cos^2θ)/(cosθsinθ))` = `(1/sinθ)/(1/(cosθsinθ)`
= `1/sinθ xx (cosθsinθ)/1 = cosθ`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
What is the value of (1 + cot2 θ) sin2 θ?
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Choose the correct alternative:
cos θ. sec θ = ?
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`