Advertisements
Advertisements
प्रश्न
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
उत्तर
LHS = `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2`
= `tan A/(sec^2 A)^2 + cot A/(cosec^2 A)^2`
= `sin A/cos A xx cos^2 A xx cos^2 A + cos A/sin A xx sin^2 A xx sin^2 A`
= sin A.cos3A + sin3A.cos A
= sin A cos A (cos2 A + sin2 A)
= sin A. cos A x 1
= sin A. cos A
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
If `sin theta = x , " write the value of cot "theta .`
Given that sin θ = `a/b`, then cos θ is equal to ______.