Advertisements
Advertisements
प्रश्न
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
उत्तर
LHS = `(sec A)/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1)`
= `(sin A)/(1/cos A + sin A/cos A - 1) + cos A/(1/sin A + cos A/sin A - 1)`
= `(sin A/(1 + sin A - cos A))/cos A + ((cos A)/(1 + cos A - sin A))/(sin A)`
= `(sin A.cos A)/(1 + sin A - cos A) + (sin A. cos A)/(1 + cos A - sin A)`
= `(sin A. cos A( 1 + cos A - sin A + 1 + sin A - cos A))/([ 1 + (sin A - cos A)][1 - (sin A - cos A)])`
= `(2sin A. cos A)/((1)^2 - (sin A - cos A)^2)`
= `(2sin A. cos A)/(1 - (sin^2 A + cos^2 A - 2 sin A.cos A))`
= `(2 sin A. cos A)/(1 - 1 + 2 sin A. cos A)`
= `2/2 = 1`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Write the value of tan10° tan 20° tan 70° tan 80° .
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
sin(45° + θ) – cos(45° – θ) is equal to ______.