Advertisements
Advertisements
प्रश्न
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
पर्याय
2 tan θ
2 sec θ
2 cosec θ
2 tan θ sec θ
उत्तर
The given expression is `tan θ /(secθ-1)+tan θ/(sec θ+1)`
=` (tan θ (sec θ+1)+tan θ(secθ-1))/((secθ-1)(secθ+1))`
= `(tan θ sec θ+tanθ+tan θ secθ-tan θ)/(sec^2θ-1)`
=`( 2tanθ secθ)/tan^2θ`
=`(2secθ)/tan θ`
= `(2 1/cos θ)/(sinθ/cos θ)`
=`2 1/ sinθ`
= `2 cosec θ`
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Choose the correct alternative:
sec 60° = ?
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.