मराठी

Prove the Following Trigonometric Identities. `Tan^2 Theta - Sin^2 Theta Tan^2 Theta Sin^2 Theta` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`

उत्तर

LHS = `tan^2 theta - sin^2 theta = sin^2 theta/cos^2 theta - sin^2 theta`   `[∵ tan^2 theta = sin^2 theta/cos^2 theta]`

`=> sin^2 theta [1/cos^2 theta - 1]`

`sin^2 theta [(1 - cos^2 theta)/cos^2 theta]`

`=> sin^2 theta . sin^2 theta/cos^2 theta = sin^2 theta tan^2 theta`

= LHS = RHS Hence proved

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 20 | पृष्ठ ४४

संबंधित प्रश्‍न

Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


Prove that:

`cosA/(1 + sinA) = secA - tanA`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


Prove the following identity :

`cosA/(1 + sinA) = secA - tanA`


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


If cos A + cos2A = 1, then sin2A + sin4 A = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×