Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
उत्तर
LHS = `tan^2 theta - sin^2 theta = sin^2 theta/cos^2 theta - sin^2 theta` `[∵ tan^2 theta = sin^2 theta/cos^2 theta]`
`=> sin^2 theta [1/cos^2 theta - 1]`
`sin^2 theta [(1 - cos^2 theta)/cos^2 theta]`
`=> sin^2 theta . sin^2 theta/cos^2 theta = sin^2 theta tan^2 theta`
= LHS = RHS Hence proved
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
If cos A + cos2A = 1, then sin2A + sin4 A = ?