Advertisements
Advertisements
प्रश्न
If cos A + cos2A = 1, then sin2A + sin4 A = ?
उत्तर
cos A + cos2A = 1 ......[Given]
∴ cos A = 1 – cos2A
∴ cos A = sin2A ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
∴ cos2A = sin4A .....[Squaring both the sides]
∴ 1 – sin2A = sin4A
∴ 1 = sin4A + sin2A
∴ sin2A + sin4A = 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
`(1 + cot^2 theta ) sin^2 theta =1`
`(sec^2 theta-1) cot ^2 theta=1`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Choose the correct alternative:
cos θ. sec θ = ?
Choose the correct alternative:
sec 60° = ?
If cos θ = `24/25`, then sin θ = ?