Advertisements
Advertisements
प्रश्न
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
उत्तर
cosec A – sin A = p ......[Given]
∴ `1/"sin A" - sin "A"` = p
∴ `(1 - sin^2"A")/"sin A"` = p
∴ `(cos^2"A")/"sin A"` = p ......`(i) [(because sin^2"A" + cos^2"A" = 1),(therefore 1 - sin^2"A" = cos^2"A")]`
sec A – cos A = q ......[Given]
∴ `1/"cos A" - cos "A"` = q
∴ `(1 - cos^2"A")/"cos A"` = q
∴ `(sin^2"A")/"cos A"` = q .....`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
L.H.S = `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)`
= `[((cos^2"A")/(sin "A"))^2 ((sin^2"A")/(cos"A"))]^(2/3) + [((cos^2"A")/(sin "A"))((sin^2"A")/(cos"A"))^2]^(2/3)` ......[From (i) and (ii)]
= `((cos^4"A")/(sin^2"A") xx (sin^2"A")/(cos"A"))^(2/3) + ((cos^2"A")/(sin"A") xx (sin^4"A")/(cos^2"A"))^(2/3)`
= `(cos^3"A")^(2/3) + (sin^3"A")^(2/3)`
= cos2A + sin2A
= 1
= R.H.S
∴ `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
sec4 A − sec2 A is equal to
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?