English

If cosec A – sin A = p and sec A – cos A = q, then prove that (p2q)23+(pq2)23 = 1 - Geometry Mathematics 2

Advertisements
Advertisements

Question

If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1

Sum

Solution

cosec A – sin A = p   ......[Given]

∴ `1/"sin A" - sin "A"` = p

∴ `(1 - sin^2"A")/"sin A"` = p

∴ `(cos^2"A")/"sin A"` = p    ......`(i) [(because sin^2"A" + cos^2"A" = 1),(therefore 1 - sin^2"A" = cos^2"A")]`

sec A – cos A = q    ......[Given]

∴ `1/"cos A" - cos "A"` = q

∴ `(1 - cos^2"A")/"cos A"` = q

∴ `(sin^2"A")/"cos A"` = q   .....`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`

L.H.S = `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)`

= `[((cos^2"A")/(sin "A"))^2 ((sin^2"A")/(cos"A"))]^(2/3) + [((cos^2"A")/(sin "A"))((sin^2"A")/(cos"A"))^2]^(2/3)`  ......[From (i) and (ii)]

= `((cos^4"A")/(sin^2"A") xx (sin^2"A")/(cos"A"))^(2/3) + ((cos^2"A")/(sin"A") xx (sin^4"A")/(cos^2"A"))^(2/3)`

= `(cos^3"A")^(2/3) + (sin^3"A")^(2/3)`

= cos2A + sin2A

= 1

= R.H.S

∴ `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.5

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 

Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities

`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`


Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove the following identity :

`tan^2A - sin^2A = tan^2A.sin^2A`


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×