English

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: 1+secAsecA=sin2A1-cosA [Hint : Simplify LHS and RHS separately.] - Mathematics

Advertisements
Advertisements

Question

 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 
Sum

Solution

 

 L.H.S

`(1+secA)/secA = (1+1/(cosA))/(1/cosA)`

= `((cosA+1)/cosA)/(1/cosA)`

= `(cosA+1)`

= `((1-cosA)(1+cosA))/(1-cosA)`

= `(1-cos^2A)/(1-cosA)`

= `(sin^2A)/(1-cosA)`           ...[∵ 1cos2 A = sin2A]

R.H.S

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.4 [Page 194]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.04 | Page 194

RELATED QUESTIONS

Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`


Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.


Prove that:

2 sin2 A + cos4 A = 1 + sin4


Prove that:

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


Show that : tan 10° tan 15° tan 75° tan 80° = 1


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`


If `sin theta = x , " write the value of cot "theta .`


Define an identity.


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Choose the correct alternative:

cot θ . tan θ = ?


Choose the correct alternative:

sec2θ – tan2θ =?


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Factorize: sin3θ + cos3θ

Hence, prove the following identity:

`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×