Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Solution
In the given question, we need to prove
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Now using `sec theta = 1/ cos theta` and `cosec theta = 1/sin theta` in LHS we get
LHS =`(1/((1/cos^2 theta) - cos^2 theta) + 1/((1/sin^2 theta) - sin^2 theta)) sin^2 theta cos^2 theta`
`= (1/((1 - cos^4 theta)/cos^2 theta) + 1/((1 - sin^4 theta)/sin^2 theta)) sin^2 theta cos^2 theta`
`= ((cos^2 theta)/(1 - cos^4 theta) + sin^2 theta/(1 - sin^4 theta)) sin^2 theta cos^2 theta`
Further using the identity `a^2 - b^2 = (a + b)(a- b)` we get
LHS = `(cos^2 theta/((1 - cos^2 theta)(1 + cos^2 theta)) + sin^2 theta/((1 - sin^2 theta) (1 + sin^2 theta)))sin^2 theta cos^2 theta`
`= ((cos^2 theta)/(sin^2 theta(1 + cos^2 theta)) + sin^2 theta/(cos^2 theta(1 + sin^2 theta))) sin^2 theta cos^2 theta`
`= ((cos^2 theta(cos^2 theta(1 + sin^2 theta))+sin^2 theta(sin^2 theta(1 + cos^2 theta)))/(sin^2 theta cos^2 theta(1 + cos^2 theta)(1 +sin^2 theta))) sin^2 theta cos^2 theta`
`= ((cos^4 theta(1 + sin^2 theta) + sin^4 theta(1 + cos^2 theta))/((1 + cos^2 theta)(1 + sin^2 theta)))`
Further using the identity `sin^2 theta + cos^2 theta = 1` we get
LHS = `((cos^4 theta + cos^4 theta sin^2 theta + sin^4 theta + sin^4 theta cos^2 theta)/(1 + cos^2 theta + sin^2 theta + sin^2 theta cos^2 theta))`
`= (cos^4 theta + sin^4 theta + cos^2 theta sin^2 theta (cos^2 theta + sin^2 theta)) /(2 + sin^2 theta cos^2theta)`
`= ((cos^4 theta +sin^4 theta +cos^2 theta sin^2theta (1))/(2 + sin^2 theta cos^2 theta))`
Now, from the identity `a^2 + b^2 = (a + b)^2 - 2ab` we get
So,
LHS = `(((cos^2 theta + sin^2 theta)^2 - 2cos^2 theta sin^2 theta +cos^2 theta sin^2 theta)/(2 + sin^2 theta cos^2 theta))`
`= (((1)^2 - cos^2 theta sin^2 theta)/(22 +sin^2 theta cos^2 theta))`
`= ((1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta cos^2 theta))`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
(sec θ + tan θ) . (sec θ – tan θ) = ?
If sin A = `1/2`, then the value of sec A is ______.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?