Advertisements
Advertisements
Question
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Solution
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
`(cotA + tanB)/(cotB + tanA)`
= `(1/tanA + tanB)/(1/tanB + tanA)`
= `((1 + tanAtanB)/tanA)/((1 + tanAtanB)/tanB) = (1 + tanAtanB)/tanA.tanB/(1 + tanAtanB)`
= `tanB/tanA = 1/tanA.tanB = cotAtanB`
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
If tan θ = `13/12`, then cot θ = ?