Advertisements
Advertisements
Question
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Solution
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
= `(1 + cosA)/(1 - cosA).(1 + cosA)/(1 + cosA)`
= `((1 + cosA)^2)/(1 - cos^2A) = (1 + cosA)^2/sin^2A`
= `[(1 + cosA)/sinA]^2 = [1/sinA + cosA/sinA]^2`
= `(cosecA + cotA)^2`
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.