Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
उत्तर
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
= `(1 + cosA)/(1 - cosA).(1 + cosA)/(1 + cosA)`
= `((1 + cosA)^2)/(1 - cos^2A) = (1 + cosA)^2/sin^2A`
= `[(1 + cosA)/sinA]^2 = [1/sinA + cosA/sinA]^2`
= `(cosecA + cotA)^2`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Prove that sin4A – cos4A = 1 – 2cos2A
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.