Advertisements
Advertisements
प्रश्न
Prove that sin4A – cos4A = 1 – 2cos2A
उत्तर
L.H.S = sin4A – cos4A
= (sin2A)2 – (cos2A)2
= (sin2A + cos2A)(sin2A – cos2A) .....[∵ a2 – b2 = (a + b)(a – b)]
= (1)(sin2A – cos2A) ......[∵ sin2A + cos2A = 1]
= sin2A – cos2A
= (1 – cos2A) – cos2A ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"" = sin^2"A")]`
= 1 – 2cos2A
= R.H.S
∴ sin4A – cos4A = 1 – 2cos2A
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
cosec4θ − cosec2θ = cot4θ + cot2θ
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Choose the correct alternative:
1 + cot2θ = ?
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
If tan θ × A = sin θ, then A = ?
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
sin(45° + θ) – cos(45° – θ) is equal to ______.
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
(1 + sin A)(1 – sin A) is equal to ______.