Advertisements
Advertisements
प्रश्न
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
उत्तर
L.H.S = `sqrt((1 + cos "A")/(1 - cos"A"))`
= `sqrt((1 + cos "A")/(1 - cos "A") xx (1 + cos "A")/(1 + cos "A"))` ......[On rationalising the denominator]
= `sqrt((1 + cos "A")^2/(1 - cos^2 "A"))`
= `sqrt((1 + cos "A")^2/(sin^2 "A")` ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
= `(1 + cos"A")/"sin A"`
= `1/"sin A" + "cos A"/"sin A"`
= cosec A + cot A
= R.H.S
∴ `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
Write the value of cosec2 (90° − θ) − tan2 θ.
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.