Advertisements
Advertisements
प्रश्न
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
उत्तर
(tan A + cot A) (cosec A – sin A) (sec A – cos A)
= `(sinA/cosA + cosA/sinA)(1/sinA - sinA)(1/cosA - cosA)`
= `((sin^2A + cos^2A)/(sinAcosA))((1 - sin^2A)/sinA)((1 - cos^2A)/cosA)`
= `(1/(sinAcosA))(cos^2A/sinA)(sin^2A/cosA)`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
If x = a tan θ and y = b sec θ then
Choose the correct alternative:
cos 45° = ?