Advertisements
Advertisements
Question
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
Solution
(tan A + cot A) (cosec A – sin A) (sec A – cos A)
= `(sinA/cosA + cosA/sinA)(1/sinA - sinA)(1/cosA - cosA)`
= `((sin^2A + cos^2A)/(sinAcosA))((1 - sin^2A)/sinA)((1 - cos^2A)/cosA)`
= `(1/(sinAcosA))(cos^2A/sinA)(sin^2A/cosA)`
= 1
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
Write the value of tan10° tan 20° tan 70° tan 80° .
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ