Advertisements
Advertisements
Question
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
Solution
`cot^2A-cot^2B`
`=cos^2A/sin^2A-cos^2B/sin^2B`
`=(cos^2Asin^2B-cos^2Bsin^2A)/(sin^2Asin^2B)`
`=(cos^2A(1-cos^2B)-cos^2B(1-cos^2A))/(sin^2Asin^2B)`
`=(cos^2A-cos^2Acos^2B-cos^2B+cos^2Bcos^2A)/(sin^2Asin^2B)`
`=(cos^2A-cos^2B)/(sin^2Asin^2B)`
`=(1-sin^2A-1+sin^2B)/(sin^2Asin^2B)`
`=(-sin^2A+sin^2B)/(sin^2Asin^2B)`
`=sin^2B/(sin^2AsinB)-sin^2A/(sin^2Asin^2B)`
`=1/sin^2A-1/sin^2B`
= cosec2A - cosec2B
APPEARS IN
RELATED QUESTIONS
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.