Advertisements
Advertisements
Question
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Solution
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
`sqrt((1 + sin theta)/(1 - sin theta)) = sqrt(((1 + sin theta)(1 + sin theta))/((1 - sin theta)(1 + sin theta))`
= `sqrt((1 + sin theta)^2/(1 - sin^2 theta)`
= `sqrt((1 + sin theta)^2/(cos^2 theta)`
= `(1 + sin theta)/cos theta`
`sqrt(((1 - sin theta))/((1 + sin theta))) = sqrt(((1 - sin theta))/((1 - sin theta)) xx ((1 + sin theta))/((1 - sin theta))`
= `sqrt((1 - sin theta)^2/(1 - sin^2 theta)`
= `sqrt((1- sin theta)^2/(cos^2 theta)) = (1 - sin theta)/cos theta`
L.H.S. = `sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta)`
= `(1 + sin theta)/cos theta + (1 - sin theta)/cos theta`
= `(1 + sin theta + 1 - sin theta)/cos theta`
= `2/cos theta`
= 2 sec θ
L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Choose the correct alternative:
1 + tan2 θ = ?
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.