Advertisements
Advertisements
Question
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
Solution
sin θ + cos θ = `sqrt(3)` ......[Given]
∴ (sin θ + cos θ)2 = 3 ......[Squaring on both sides]
∴ sin2θ + 2sinθ cosθ + cos2θ = 3 ......[∵ (a + b)2 = a2 + 2ab + b2]
∴ (sin2θ + cos2θ) + 2sinθ cosθ = 3
∴ 1 + 2 sin θ cos θ = 3 ......[∵ sin2θ + cos2θ = 1]
∴ 2 sin θ cos θ = 2
∴ sin θ cos θ = 1 ......(i)
tan θ + cot θ = `sintheta/costheta + costheta/sintheta`
= `(sin^2theta + cos^2theta)/(costhetasintheta)`
= `1/(sintheta costheta)` ......[∵ sin2θ + cos2θ = 1]
= `1/1` ......[From (i)]
= 1
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
What is the value of 9cot2 θ − 9cosec2 θ?
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that:
tan (55° + x) = cot (35° – x)
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Given that sin θ = `a/b`, then cos θ is equal to ______.
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
Eliminate θ if x = r cosθ and y = r sinθ.
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`