English

If sin θ + cos θ = 3, then show that tan θ + cot θ = 1 - Geometry Mathematics 2

Advertisements
Advertisements

Question

If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1

Sum

Solution

sin θ + cos θ = `sqrt(3)`     ......[Given]

∴ (sin θ + cos θ)2 = 3    ......[Squaring on both sides]

∴ sin2θ + 2sinθ cosθ + cos2θ = 3  ......[∵ (a + b)2 = a2 + 2ab + b2]

∴ (sin2θ + cos2θ) + 2sinθ cosθ = 3

∴ 1 + 2 sin θ cos θ = 3   ......[∵ sin2θ + cos2θ = 1]

∴ 2 sin θ cos θ = 2

∴ sin θ cos θ = 1   ......(i)

tan θ + cot θ = `sintheta/costheta + costheta/sintheta`

= `(sin^2theta + cos^2theta)/(costhetasintheta)`

= `1/(sintheta costheta)`   ......[∵ sin2θ + cos2θ = 1]

= `1/1`    ......[From (i)]

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.5

RELATED QUESTIONS

Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?


What is the value of 9cot2 θ − 9cosec2 θ? 


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


(sec A + tan A) (1 − sin A) = ______.


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


Prove that:

tan (55° + x) = cot (35° – x)


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Given that sin θ = `a/b`, then cos θ is equal to ______.


(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.


Eliminate θ if x = r cosθ and y = r sinθ.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×