Advertisements
Advertisements
Question
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Solution
We have `(cot theta + tan theta ) = m and ( sec theta - cos theta )=n`
Now, `m^2 n = [(cot theta + tan theta )^2 (sec theta - cos theta )]`
=`[(1/tan theta + tan theta )^2 (1/cos theta- cos theta )]`
=`(1+tan^2 theta)^2/tan^2 theta xx ((1-cos^2 theta))/costheta`
=`sec^4 theta/tan^2 theta xx sin^2 theta/ cos theta`
=`sec ^4 theta /(sin^2 theta/cos^2 theta) xx sin^2 theta / cos theta`
=`(cos^2 xxsec^4 theta)/costheta`
=`cos theta sec^4 theta`
=`1/ sec theta xx sec ^4 theta = sec^3 theta`
∴`(m^2 n)^(2/3) =(sec^3 theta )^(2/3) = sec^2 theta`
Again , `mn^2 = [(cot theta + tan theta )( sec theta - cos theta )^2 ]`
=`[(1/tan theta + tan theta).(1/ cos theta - cos theta)^2]`
=`((1+ tan^2 theta))/tan theta xx ((1- cos^2 theta)^2)/cos^2 theta `
=`sec^2 theta/tan theta xx sin^4 theta/cos^2 theta`
=`sec^2 theta/(sintheta/costheta) xx sin^4 theta/ cos^2 theta`
=`(sec^2 xx sin^3 theta)/cos theta`
=`1/ cos^2 theta xx sec^3 theta/ cos theta = tan^3 theta `
∴ `(mn^2)^(2/3) = (tan ^3 theta )^(2/3) = tan^2 theta`
Now ,` (m^2n)^(2/3) - (mn^2)^(2/3)`
=`sec^2 theta - tan^2 theta =1 `
=RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.