Advertisements
Advertisements
Question
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Solution
Given cot θ + tan θ = x and sec θ – cos θ = y
x = cot θ + tan θ
x = `1/tan theta + tan theta`
= `(1 + tan^2 theta)/tan theta`
= `(sec^2 theta)/tan theta`
= `(1/cos^2theta)/(sin theta/costheta`
= `1/(cos theta sin theta)`
y = sec θ – cos θ
= `1/cos theta - cos theta`
= `(1 - cos^2 theta)/cos theta`
y = `(sin^2 theta)/costheta`
= `[1/(cos^2thetasin^2theta) xx (sin^2theta)/costheta]^(2/3) - [1/(cos theta sin theta) xx (sin^4 theta)/(cos^2 theta)]^(2/3)`
= `[1/(cos^3theta)]^(2/3) - [(sin^3 theta)/(cos^3 theta)]^(2/3)`
= `[1/(cos^2 theta)] - [(sin^2 theta)/(cos^2 theta)]`
= `[(1 - sin^2 theta)/(cos^2 theta)]`
= `[(cos^2 theta)/(cos^2 theta)]`
= 1
L.H.S = R.H.S
⇒ `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
APPEARS IN
RELATED QUESTIONS
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that:
tan (55° + x) = cot (35° – x)
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ